7658 measured reflections 3390 independent reflections

 $R_{\rm int} = 0.025$

2760 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-(Diphenylmethylene)-3-pentyl-5,6dihydro-4*H*-pyrrolo[1,2-e][1,2,3]triazole

Ying-Hong Zhu,* Shan-Shan Li, Ying-Hua Xu and Chun-An Ma

State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering and Materials, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China Correspondence e-mail: yhzhuchem@zjut.edu.cn

Received 17 November 2007; accepted 17 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.132; data-to-parameter ratio = 14.3.

The title compound, $C_{23}H_{25}N_3$, is an important pyrrolotriazole compound. The two phenyl rings are nearly perpendicular, with a dihedral angle between them of $85.88 (8)^{\circ}$. The fivemembered pyrrolidine ring adopts an envelope conformation.

Related literature

For related literature, see: Dulcere et al. (1990); Pearson et al. (1990).

Experimental

Crystal data

β

C ₂₃ H ₂₅ N ₃	$\gamma = 92.35 \ (3)^{\circ}$
$M_r = 343.46$	V = 951.1 (4) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 8.5670 (17) Å	Mo $K\alpha$ radiation
b = 9.4620 (19) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 12.626 (3) Å	T = 298 (2) K
$\alpha = 110.15 \ (3)^{\circ}$	$0.46 \times 0.34 \times 0.30$ mm
$\beta = 96.53 (3)^{\circ}$	

Data collection

Bruker SMART 1K CCD areadetector diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 2002) $T_{\min} = 0.968, T_{\max} = 0.979$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	237 parameters
$wR(F^2) = 0.132$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.28 \text{ e } \text{\AA}^{-3}$
3390 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2007).

The authors thank Zhejiang University of Technology for financial support

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LW2050).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dulcere, J. P., Tawil, M. & Santelli, M. (1990). J. Org. Chem. 55, 571-575.

Pearson, W. H., Bergmeier, S. C., Degan, S., Lin, K. C., Poon, Y. F., Schkeryantz, J. M. & Williams, J. P. (1990). J. Org. Chem. 55, 5719-5738.

Sheldrick, G. M. (2001). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany

Westrip, S. P. (2007). publCIF. In preparation.

Acta Cryst. (2007). E63, 04863 [doi:10.1107/S1600536807060175]

4-(Diphenylmethylene)-3-pentyl-5,6-dihydro-4*H*-pyrrolo[1,2-*e*][1,2,3]triazole

Y.-H. Zhu, S.-S. Li, Y.-H. Xu and C.-A. Ma

Comment

Pyrrolotriazoles are an important class of heterocycles due to their applications as bioactive compounds and synthetic intermediates in organic synthesis (Dulcere *et al.*, 1990; Pearson *et al.*, 1990). The molecular structure of **I** contains an exocyclic double bondconnecting two benzene rings (Fig. 1). The two benzene rings are near perpendicular with the dihedral angle of 85.88 (8)°. The five-membered pyrrolidine ring adopts an envelope conformation, with atom C4 lying at the flap position. All bond lengths and angles in (I) are normal.

Experimental

1-(3-Iodo-4, 4-diphenylbut-3-enyl)-4-pentyl-1*H*-1,2,3-triazole (0.25 mmol), Pd(OAc)₂ (0.025 mmol), tetrabutylammonium chloride (TBAC, 0.25 mmol), NaHCO₃ (0.5 mmol), and *N*,*N*-dimethylformamide (DMF, 1 ml) were added into a Schlenk tube at r.t. The reaction mixture was stirred at 100 °C until the reaction was completed, as monitored by TLC. Then the reaction mixture was cooled and H₂O (15 ml) was added. The aqueous layer was extracted with EtOAc (3 × 15 ml). The organic layer was dried over anhyd MgSO₄. After evaporation, the residue was subjected to preparative TLC (eluent: PE–EtOAc, 1:4) to afford 4,4-diphenylmethylene-3-pentyl-5,6-dihydro-4*H*-pyrrolo-[1,2-*c*][1,2,3]-triazoles and the single crystals were obtained by evaporation of a petroleum ether–dichloromethane (1:9) mixed solution. m.p. 401–403 K, ¹H NMR (400 MHz, CDCl₃): δ 0.81 (t, 3H, J = 7.28 Hz), 0.91–0.95 (m, 2H), 1.13–1.18 (m, 2H), 1.25–1.29 (m, 2H), 1.49 (t, 2H, J = 7.49 Hz), 3.52 (t, 2H, J = 6.94 Hz), 4.38 (t, 2H, J = 6.94 Hz), 7.19–7.37 (m, 10H); ¹³C NMR (100 MHz, CDCl₃): δ 141.98, 141.31, 138.41, 137.64, 129.93, 129.18, 128.73, 128.21, 127.85, 127.69, 123.53, 45.24, 37.51, 31.36, 29.16, 25.60, 22.30, 13.96; IR v_{max}(cm⁻¹): 2964, 2922, 1440, 764, 702; MS (70 eV, EI) *m/z* (%): 343 (*M*⁺, 10.23); Anal. calcd for C₂₃H₂₅N₃: C 80.43, H 7.34, N 12.23; Found: C, 80.20 H 7.41 N 12.33.

Refinement

H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 (aromatic CH), 0.97 Å (methylene CH2) or 0.96 Å (methyl CH3) and with $U_{iso}(H) = 1.2$ Ueq (carrier aromatic C and methylene C) and $U_{iso}(H) = 1.5$ Ueq (methyl C)

Figures

Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 2. The molecular packing of (I). H atoms have been omitted for clarity.

4-(Diphenylmethylene)-3-pentyl-5,6-dihydro-4*H*-pyrrolo[1,2-e][1,2,3]triazole

Crystal	data
---------	------

C ₂₃ H ₂₅ N ₃	Z = 2
$M_r = 343.46$	$F_{000} = 368$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.199 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Melting point: 401-403 K
<i>a</i> = 8.5670 (17) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 9.4620 (19) Å	Cell parameters from 7563 reflections
c = 12.626 (3) Å	$\theta = 3.1 - 27.5^{\circ}$
$\alpha = 110.15 \ (3)^{\circ}$	$\mu = 0.07 \text{ mm}^{-1}$
$\beta = 96.53 \ (3)^{\circ}$	T = 298 (2) K
$\gamma = 92.35 \ (3)^{\circ}$	Prism, colourless
$V = 951.1 (4) Å^3$	$0.46 \times 0.34 \times 0.30 \text{ mm}$

Data collection

Bruker SMART 1K CCD area-detector diffractometer	3390 independent reflections
Radiation source: fine-focus sealed tube	2760 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.025$
T = 298(2) K	$\theta_{max} = 25.2^{\circ}$
ϕ and ω scans	$\theta_{\min} = 3.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2002)	$h = -10 \rightarrow 10$
$T_{\min} = 0.968, T_{\max} = 0.979$	$k = -10 \rightarrow 11$
7658 measured reflections	$l = -15 \rightarrow 14$

Refinement

Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.079P)^2 + 0.0929P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{max} < 0.001$

.

. .

S = 1.05 3390 reflections

237 parameters

 $\Delta \rho_{\text{min}} = -0.16 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXTL (Sheldrick, 2001), Fc^{*}=kFc[1+0.001xFc²\lambda³/sin(20)]^{-1/4}

Primary atom site location: structure-invariant direct Extinction coefficient: 0.064 (7)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	Uiso*/Ueq
C1	0.33609 (17)	0.27301 (16)	0.25285 (13)	0.0482 (4)
C2	0.35129 (15)	0.24224 (14)	0.13890 (12)	0.0421 (3)
C3	0.45343 (16)	0.23998 (14)	0.05331 (11)	0.0408 (3)
C4	0.35889 (18)	0.14039 (17)	-0.06004 (13)	0.0516 (4)
H4A	0.3933	0.0391	-0.0836	0.062*
H4B	0.3720	0.1823	-0.1189	0.062*
C5	0.18669 (19)	0.13781 (19)	-0.03883 (15)	0.0587 (4)
H5A	0.1298	0.2083	-0.0656	0.070*
H5B	0.1329	0.0374	-0.0747	0.070*
C6	0.59495 (15)	0.31716 (14)	0.06819 (11)	0.0389 (3)
C7	0.68776 (15)	0.30490 (15)	-0.02667 (11)	0.0403 (3)
C8	0.76621 (17)	0.43428 (16)	-0.03088 (13)	0.0476 (4)
H8	0.7613	0.5266	0.0266	0.057*
C9	0.85109 (18)	0.42807 (18)	-0.11863 (14)	0.0542 (4)
Н9	0.9008	0.5161	-0.1207	0.065*
C10	0.8624 (2)	0.2925 (2)	-0.20268 (14)	0.0592 (4)
H10	0.9200	0.2884	-0.2616	0.071*
C11	0.7883 (2)	0.16252 (19)	-0.19965 (14)	0.0628 (5)
H11	0.7965	0.0703	-0.2563	0.075*
C12	0.70185 (19)	0.16862 (17)	-0.11269 (13)	0.0530 (4)
H12	0.6521	0.0800	-0.1116	0.064*
C13	0.59302 (19)	0.56081 (17)	0.23027 (14)	0.0533 (4)
H13	0.4989	0.5778	0.1938	0.064*
C14	0.6605 (2)	0.6666 (2)	0.33246 (16)	0.0702 (5)
H14	0.6123	0.7549	0.3643	0.084*

C15	0.7988 (3)	0.6422 (2)	0.38757 (16)	0.0769 (6)
H15	0.8432	0.7130	0.4573	0.092*
C16	0.8709 (2)	0.5131 (2)	0.33934 (15)	0.0697 (5)
H16	0.9648	0.4969	0.3765	0.084*
C17	0.80560 (17)	0.40706 (19)	0.23614 (13)	0.0516 (4)
H17	0.8565	0.3208	0.2035	0.062*
C18	0.66401 (15)	0.42899 (15)	0.18103 (11)	0.0410 (3)
C19	0.45400 (19)	0.32105 (18)	0.35752 (13)	0.0545 (4)
H19A	0.3994	0.3543	0.4240	0.065*
H19B	0.5223	0.4061	0.3588	0.065*
C20	0.5532 (2)	0.1953 (2)	0.36372 (15)	0.0688 (5)
H20A	0.6011	0.1575	0.2944	0.083*
H20B	0.4849	0.1131	0.3671	0.083*
C21	0.6819 (2)	0.2416 (2)	0.46465 (15)	0.0719 (5)
H21A	0.7497	0.3245	0.4617	0.086*
H21B	0.6340	0.2783	0.5340	0.086*
C22	0.7820 (3)	0.1160 (3)	0.46995 (17)	0.0785 (6)
H22A	0.8562	0.1533	0.5395	0.094*
H22B	0.7141	0.0343	0.4745	0.094*
C23	0.8721 (3)	0.0538 (3)	0.37182 (18)	0.0864 (6)
H23A	0.8000	0.0007	0.3042	0.130*
H23B	0.9435	-0.0144	0.3874	0.130*
H23C	0.9307	0.1351	0.3608	0.130*
N1	0.20552 (13)	0.18469 (13)	0.08445 (11)	0.0491 (3)
N2	0.10358 (15)	0.18025 (16)	0.15497 (14)	0.0627 (4)
N3	0.18367 (16)	0.23448 (16)	0.25885 (13)	0.0610 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0419 (8)	0.0454 (8)	0.0559 (9)	-0.0007 (6)	0.0133 (7)	0.0146 (6)
C2	0.0325 (7)	0.0360 (7)	0.0536 (8)	-0.0028 (5)	0.0021 (6)	0.0124 (6)
C3	0.0376 (7)	0.0386 (7)	0.0424 (8)	-0.0015 (6)	-0.0005 (6)	0.0118 (6)
C4	0.0495 (9)	0.0499 (8)	0.0472 (9)	-0.0106 (7)	-0.0051 (7)	0.0121 (6)
C5	0.0463 (9)	0.0558 (9)	0.0654 (10)	-0.0125 (7)	-0.0114 (8)	0.0183 (8)
C6	0.0353 (7)	0.0380 (7)	0.0411 (7)	0.0000 (5)	0.0016 (6)	0.0124 (6)
C7	0.0355 (7)	0.0446 (7)	0.0392 (7)	-0.0003 (6)	-0.0002 (6)	0.0146 (6)
C8	0.0440 (8)	0.0454 (8)	0.0499 (8)	-0.0038 (6)	0.0061 (7)	0.0132 (6)
C9	0.0501 (9)	0.0592 (9)	0.0560 (9)	-0.0069 (7)	0.0064 (7)	0.0252 (7)
C10	0.0561 (9)	0.0760 (11)	0.0456 (9)	-0.0004 (8)	0.0134 (7)	0.0202 (8)
C11	0.0716 (11)	0.0565 (9)	0.0524 (10)	0.0015 (8)	0.0189 (8)	0.0065 (7)
C12	0.0595 (9)	0.0436 (8)	0.0535 (9)	-0.0023 (7)	0.0121 (7)	0.0133 (7)
C13	0.0491 (9)	0.0474 (8)	0.0567 (9)	-0.0047 (7)	0.0079 (7)	0.0107 (7)
C14	0.0756 (12)	0.0530 (10)	0.0646 (11)	-0.0174 (9)	0.0189 (10)	-0.0016 (8)
C15	0.0759 (13)	0.0854 (13)	0.0463 (10)	-0.0385 (11)	0.0045 (9)	0.0001 (9)
C16	0.0459 (9)	0.1048 (15)	0.0518 (10)	-0.0249 (9)	-0.0086 (8)	0.0275 (10)
C17	0.0372 (8)	0.0684 (10)	0.0470 (8)	-0.0052 (7)	0.0031 (6)	0.0197 (7)
C18	0.0347 (7)	0.0446 (7)	0.0407 (7)	-0.0077 (6)	0.0055 (6)	0.0124 (6)

G1.0	0.0.7.(0)	0.0.501 (0)	0.0444.(0)	0 00 1 = (=)	0.04.40 (=)	0.0110 (=)
C19	0.0560 (9)	0.0591 (9)	0.0444 (9)	-0.0047 (7)	0.0140 (7)	0.0118 (7)
C20	0.0696 (11)	0.0648 (11)	0.0600 (11)	-0.0012 (9)	-0.0041 (9)	0.0116 (8)
C21	0.0791 (13)	0.0765 (12)	0.0485 (10)	-0.0009 (10)	0.0027 (9)	0.0098 (8)
C22	0.0752 (13)	0.0949 (14)	0.0607 (11)	0.0034 (11)	-0.0047 (10)	0.0263 (10)
C23	0.0782 (14)	0.1045 (16)	0.0700 (13)	0.0172 (12)	0.0027 (11)	0.0236 (11)
N1	0.0332 (6)	0.0461 (7)	0.0633 (8)	-0.0047 (5)	0.0015 (6)	0.0158 (6)
N2	0.0372 (7)	0.0612 (8)	0.0871 (11)	-0.0037 (6)	0.0146 (7)	0.0218 (7)
N3	0.0473 (8)	0.0612 (8)	0.0724 (10)	-0.0024 (6)	0.0200 (7)	0.0179 (7)
Geometric paran	neters (Å, °)					
C1—N3		1.359 (2)	C13—C	218	1.388	(2)
C1—C2		1.389 (2)	C13—H	113	0.930	0
C1—C19		1.489 (2)	C14—C	215	1.373	(3)
C2—N1		1.3489 (18)	C14—H	I14	0.930	0
C2—C3		1.461 (2)	C15—C	216	1.371	(3)
C3—C6		1.3489 (19)	C15—H	115	0.930	0
C3—C4		1.529 (2)	C16—C	217	1.380	(2)
C4—C5		1.530 (2)	C16—H	116	0.930	0
C4—H4A		0.9700	C17—C	218	1.388	(2)
C4—H4B		0.9700	C17—H	I17	0.930	0
C5—N1		1.452 (2)	C19—C	220	1.508	(2)
С5—Н5А		0.9700	С19—Н	I19A	0.970	0
C5—H5B		0.9700	C19—H	I19B	0.970	0
С6—С7		1.4861 (19)	C20—C	221	1.513	(3)
C6—C18		1.489 (2)	C20—H	I20A	0.970	0
C7—C12		1.391 (2)	C20—H	I20B	0.970	0
С7—С8		1.392 (2)	C21—C	222	1.508	(3)
С8—С9		1.379 (2)	C21—H	I21A	0.970	0
С8—Н8		0.9300	C21—H	I21B	0.970	0
C9—C10		1.370 (2)	C22—C	223	1.493	(3)
С9—Н9		0.9300	C22—H	122A	0.970	0
C10-C11		1.375 (2)	C22—H	I22B	0.970	0
C10—H10		0.9300	C23—H	I23A	0.960	0
C11—C12		1.379 (2)	C23—H	I23B	0.960	0
C11—H11		0.9300	C23—H	I23C	0.960	0
C12—H12		0.9300	N1—N2	2	1.325	4 (19)
C13—C14		1.376 (2)	N2—N3	3	1.326	(2)
N3—C1—C2		107.72 (14)	C16—C	C15—C14	119.7	1 (17)
N3—C1—C19		119.73 (14)	C16—C	С15—Н15	120.1	
C2-C1-C19		132.18 (13)	C14—C	С15—Н15	120.1	
N1—C2—C1		103.58 (13)	C15—C	C16—C17	120.6	4 (17)
N1—C2—C3		108.11 (13)	C15—C	С16—Н16	119.7	
C1—C2—C3		148.26 (13)	C17—C	С16—Н16	119.7	
C6—C3—C2		128.27 (13)	C16—C	C17—C18	120.0	9 (17)
C6—C3—C4		126.70 (14)	C16—C	С17—Н17	120.0	
C2—C3—C4		104.86 (12)	C18—C	С17—Н17	120.0	
C3—C4—C5		105.79 (13)	C13—C	C18—C17	118.6	4 (14)
С3—С4—Н4А		110.6	C13—C	С18—С6	120.8	5 (13)

С5—С4—Н4А	110.6	C17—C18—C6	120.42 (13)
C3—C4—H4B	110.6	C1—C19—C20	112.15 (13)
C5—C4—H4B	110.6	С1—С19—Н19А	109.2
H4A—C4—H4B	108.7	С20—С19—Н19А	109.2
N1C5C4	100.99 (12)	C1C19H19B	109.2
N1—C5—H5A	111.6	C20—C19—H19B	109.2
С4—С5—Н5А	111.6	H19A—C19—H19B	107.9
N1—C5—H5B	111.6	C19—C20—C21	114.11 (15)
С4—С5—Н5В	111.6	C19—C20—H20A	108.7
H5A—C5—H5B	109.4	C21—C20—H20A	108.7
C3—C6—C7	123.05 (13)	С19—С20—Н20В	108.7
C3—C6—C18	121.56 (13)	C21—C20—H20B	108.7
C7—C6—C18	115.28 (11)	H20A-C20-H20B	107.6
C12—C7—C8	117.43 (13)	C22—C21—C20	113.99 (16)
C12—C7—C6	123.08 (13)	C22—C21—H21A	108.8
C8—C7—C6	119.49 (12)	C20-C21-H21A	108.8
C9—C8—C7	121.25 (14)	C22—C21—H21B	108.8
С9—С8—Н8	119.4	C20—C21—H21B	108.8
С7—С8—Н8	119.4	H21A—C21—H21B	107.6
C10—C9—C8	120.16 (15)	C23—C22—C21	115.16 (18)
С10—С9—Н9	119.9	C23—C22—H22A	108.5
С8—С9—Н9	119.9	C21—C22—H22A	108.5
C9—C10—C11	119.84 (15)	С23—С22—Н22В	108.5
С9—С10—Н10	120.1	C21—C22—H22B	108.5
C11—C10—H10	120.1	H22A—C22—H22B	107.5
C10-C11-C12	120.13 (15)	С22—С23—Н23А	109.5
C10-C11-H11	119.9	С22—С23—Н23В	109.5
C12—C11—H11	119.9	H23A—C23—H23B	109.5
C11—C12—C7	121.18 (15)	С22—С23—Н23С	109.5
C11—C12—H12	119.4	H23A—C23—H23C	109.5
C7—C12—H12	119.4	H23B—C23—H23C	109.5
C14—C13—C18	120.66 (17)	N2—N1—C2	112.88 (13)
C14—C13—H13	119.7	N2—N1—C5	131.20 (13)
C18—C13—H13	119.7	C2—N1—C5	115.92 (13)
C15—C14—C13	120.23 (18)	N1—N2—N3	106.16 (12)
C15—C14—H14	119.9	N2—N3—C1	109.65 (14)
C13—C14—H14	119.9		
N3—C1—C2—N1	-0.93 (15)	C13—C14—C15—C16	1.2 (3)
C19—C1—C2—N1	171.87 (15)	C14—C15—C16—C17	-0.3 (3)
N3—C1—C2—C3	-177.8 (2)	C15—C16—C17—C18	-1.2 (3)
C19—C1—C2—C3	-5.0 (3)	C14—C13—C18—C17	-0.9 (2)
N1—C2—C3—C6	162.70 (13)	C14—C13—C18—C6	-177.46 (14)
C1—C2—C3—C6	-20.5 (3)	C16-C17-C18-C13	1.8 (2)
N1—C2—C3—C4	-12.67 (14)	C16—C17—C18—C6	178.33 (14)
C1—C2—C3—C4	164.2 (2)	C3—C6—C18—C13	-65.61 (18)
C6—C3—C4—C5	-155.29 (14)	C7—C6—C18—C13	110.64 (14)
C2—C3—C4—C5	20.18 (15)	C3—C6—C18—C17	117.91 (15)
C3—C4—C5—N1	-19.41 (15)	C7—C6—C18—C17	-65.84 (17)
C2—C3—C6—C7	-179.97 (12)	N3—C1—C19—C20	100.21 (18)

C4—C3—C6—C7	-5.6 (2)	C2-C1-C19-C20	-71.9 (2)
C2—C3—C6—C18	-4.0 (2)	C1-C19-C20-C21	176.16 (15)
C4—C3—C6—C18	170.40 (13)	C19—C20—C21—C22	-179.40 (17)
C3—C6—C7—C12	-41.1 (2)	C20—C21—C22—C23	62.1 (3)
C18—C6—C7—C12	142.75 (14)	C1—C2—N1—N2	1.04 (15)
C3—C6—C7—C8	139.42 (14)	C3—C2—N1—N2	179.32 (11)
C18—C6—C7—C8	-36.77 (18)	C1-C2-N1-C5	-178.51 (12)
C12—C7—C8—C9	1.7 (2)	C3—C2—N1—C5	-0.23 (16)
C6—C7—C8—C9	-178.76 (13)	C4—C5—N1—N2	-166.64 (14)
C7—C8—C9—C10	-1.4 (2)	C4—C5—N1—C2	12.81 (17)
C8—C9—C10—C11	0.3 (3)	C2—N1—N2—N3	-0.73 (16)
C9—C10—C11—C12	0.5 (3)	C5—N1—N2—N3	178.73 (14)
C10—C11—C12—C7	-0.1 (3)	N1—N2—N3—C1	0.09 (16)
C8—C7—C12—C11	-0.9 (2)	C2-C1-N3-N2	0.55 (17)
C6—C7—C12—C11	179.52 (14)	C19—C1—N3—N2	-173.31 (13)
C18—C13—C14—C15	-0.5 (3)		

Fig. 1

Fig. 2